
Lawrence
Livermore
National
Laboratory

U.S. Department of Energy

Preprint
UCRL-JP-200044

Pursuing Scalability for

hypre’s Conceptual Interfaces

Robert D. Falgout, Jim E. Jones and
Ulrike Meier Yang

This article was submitted to

ACM Transactions on Mathematical Software

September 4, 2003

Approved for public release; further dissemination unlimited



DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor the University of California nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or the University of California. The views and
opinions of authors expressed herein do not necessarily state or reflect those of the United States Government
or the University of California, and shall not be used for advertising or product endorsement purposes.
This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be

made before publication, this preprint is made available with the understanding that it will not be cited or
reproduced without the permission of the author.

This research was supported under the auspices of the U.S. Department of Energy by the University of
California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

Approved for public release; further dissemination unlimited



Pursuing Scalability for hypre’s Conceptual

Interfaces

Robert D. Falgout Jim E. Jones Ulrike Meier Yang∗

Abstract

The software library hypre provides high performance preconditioners and
solvers for the solution of large, sparse linear systems on massively parallel
computers as well as conceptual interfaces that allow users to access the li-
brary in the way they naturally think about their problems. These interfaces
include a stencil-based structured interface (Struct); a semi-structured in-
terface (semiStruct), which is appropriate for applications that are mostly
structured, e.g. block structured grids, composite grids in structured adap-
tive mesh refinement applications, and overset grids; a finite element interface
(FEI) for unstructured problems, as well as a conventional linear-algebraic
interface (IJ). It is extremely important to provide an efficient, scalable im-
plementation of these interfaces in order to support the scalable solvers of the
library, especially when using tens of thousands of processors. This paper de-
scribes the data structures, parallel implementation and resulting performance
of the IJ, Struct and semiStruct interfaces. It investigates their scalability,
presents successes as well as pitfalls of some of the approaches and suggests
ways of dealing with them.

1 Introduction

The software library hypre [6, 1] provides high performance preconditioners and
solvers for the solution of large, sparse linear systems on massively parallel com-
puters. Its development was motivated by the need to provide users with advanced
scalable parallel solvers and preconditioners that efficiently solve computationally
challenging applications of increasing proportions. Issues of robustness, ease of use,
flexibility and interoperability have also been important.
One of its attractive features is the provision of conceptual interfaces that allow

users to access the library in the way they naturally think about their problems. For
example, application developers that use structured grids, typically think of their
problems in terms of stencils and grids, whereas for an application that uses un-
structured grids and finite elements it is more natural to access the preconditioners
and solvers via elements and element stiffness matrices.
Conceptual interfaces also decrease the coding burden for users. The most com-

mon interface used in libraries today is a linear-algebraic one. This interface requires
that the user compute the mapping of their discretization to row-column entries in
a matrix. This code can be quite complex; for example, consider the problem of
ordering the equations and unknowns on the composite grids used in structured
AMR codes. The use of a conceptual interface merely requires the user to input
the information that defines the problem to be solved, leaving the forming of the
actual linear system as a library implementation detail hidden from the user.

∗Center for Applied Scientific Computing, Lawrence Livermore National Laboratory,

P.O. Box 808, L-561, Livermore, CA 94551.

1



Conceptual interfaces also provide access to a large array of powerful scalable
linear solvers that need the extra information beyond just the matrix. For example,
geometric multigrid (GMG) cannot be used through a linear-algebraic interface,
since it is formulated in terms of grids. Similarly, in many cases, these interfaces
allow the use of other data storage schemes that have less memory overhead and
that provide for more efficient computational kernels.
The conceptual interfaces currently include a stencil-based structured interface

(Struct); a semi-structured interface (semiStruct), which is appropriate for ap-
plications that are mostly structured, e.g. block structured grids, composite grids
in structured mesh refinement applications, and overset grids; a finite-element in-
terface (FEI) for unstructured problems; and a traditional linear-algebraic interface
(IJ). A detailed discussion of the design and use of these interfaces can be found in
[7].
Clearly, it is of utmost importance to provide an efficient, scalable implemen-

tation of these interfaces in order to support the scalable solvers of the library,
especially when using tens of thousands of processors.
The primary focus of this paper is on the implementation and performance of the

conceptual interfaces in hypre, particularly the IJ, the Struct, and the semiStruct
interface. The FEI interface was implemented elsewhere [5] and is therefore not
discussed in this paper.
In Section 2, we state our goals and define some terms that will be used through-

out the paper. In the following sections, the data structures, parallel implementation
and resulting performance are discussed for the IJ (Section 3), the Struct (Section
4) and the semiStruct (Section 5) interface. The complexities of the algorithms
that set up the data structures and communication packages are analyzed.

2 Goals and Definitions

It is important to define our goals regarding scalability. There are two basic con-
siderations that need to be made here: computations and storage. For scalable
computations, our goal is to construct algorithms that depend on the data loga-
rithmically or better. So, if p is the number of processors, we want our algorithms
to require no more than O(log p) parallel operations. For storage costs, we allow
no more than O(p) memory units. However, thinking of parallel computers with
100,000 processors or more, our ultimate goal is to reduce storage costs to O(log p),
and we will discuss approaches on how to achieve this for each interface, starting
with the IJ interface (since it is the simplest), followed by the Struct interface,
and finally the semiStruct interface, which combines both interfaces.
The paper is structured such that for each of the interfaces under consideration

we first describe the data structures. The data structures are very different for each
interface and strongly depend on the particular conception that motivated each in-
terface. Then communication issues are discussed, particularly how communication
is currently implemented and how it can be improved in some cases.
Below we define a few terms that will be used in the remainder of the paper

and are common to all interfaces. It is assumed that at the beginning of the setup
phase the user gives only local information to the processor. Consequently, this
requires that each processor needs to somehow obtain neighborhood information.
This is achieved by the creation of a communication package on each processor. A
communication package is a data structure that contains the neighborhood infor-
mation. Each package needs to contain the IDs of the neighbor processors. There
are two types of neighbors. We will refer to neighbors from which the processor
needs to receive data as receive processors. Those neighbors to which data need
to be sent will be called send processors. Often a receive processor is also a send

2



processor and vice versa. In a symmetric problem (here the definition of symmetry
depends on the interface and data structure chosen) the set of receive processors is
identical to the set of send processors, but in general it is important to distinguish
between both types. A communication package needs to also contain information
on how to encode or decode data that needs to be sent or received. The format
of this information depends on the individual interface and the underlying data
structures.
In the following sections the data structures and communication packages for

the IJ, the Struct, and the semiStruct interface are described, as well as issues
particular to each interface. The algorithms that are necessary to create the commu-
nication package and other needed information are analyzed with regard to parallel
computation units and memory usage.

3 The Linear-Algebraic Interface (IJ)

The IJ interface is the traditional linear-algebraic interface. Here, the user defines
the right hand side and the matrix in the general linear-algebraic sense, i.e. in terms
of row and column indices. This interface provides access only to the most general
data structures and solvers (such as BoomerAMG [8], Euclid [9] and ParaSails [4])
and as such should only be used when none of the grid-based interfaces is applicable.

3.1 Data Structure

As with the other interfaces in hypre, the IJ interface expects to get the data in
distributed form. Matrices are assumed to be distributed across p processors by
contiguous blocks of rows. That is, the matrix must be blocked as follows:











A1

A2

...
Ap











, (1)

where each submatrix Ak is “owned” by a single processor k, k = 1, . . . , p. Ak

contains the rows rk, rk + 1, ..., rk+1 − 1.
We will make the additional assumptions, on which we base the analysis of the

algorithms. Define N the global number of rows of A. [r1, . . . , rp, rp+1] be the global
partitioning of A, where r1 = 1 and rp+1 = N + 1. Let us assume that Nb is the
maximal number of rows per processor, i.e. Nb = max1≤k≤p(rk+1 − rk), and that
Nb is independent of p. This implies that N ≤ pNb and that N is increasing with
increasing p. Often a balanced partitioning, i.e. Nb ≈ N/p, is chosen in order to
achieve good load balancing. Let us also assume that each processor has at most
q neighbor processors and that each row of A has at most m coefficients, where q
and m are independent of p. This is the case for many applications, e.g. for a 2-d
5-point Laplace operator m = 5 and q = 4 and for a 3-d 7-point Laplace operator
m = 7 and q = 6.
To create an IJ matrix, the user needs specify the row extents, rk and rk+1 −

1, on processor k. Next, the object type needs to be set, which determines the
underlying data structure. Currently only one data structure, the ParCSR matrix
data structure, is available.
Before we describe the ParCSR matrix, we give a brief definition of a CSR ma-

trix, which is based on the sequential compressed sparse row (CSR) data structure.
A CSR matrix consists of the integer num rows, which defines the number of rows
of the matrix, and the integer arrays row start, col index and data. data

is a real array of the size of the number of non-zeros of the matrix and contains

3



Figure 1: An example of a ParCSR matrix, distributed across 3 processors. Matrices
with local coefficients, D1, D2 and D3, are shown as boxes within each processor.
The remaining coefficients are compressed into the matrices O1, O2 and O3.

the non-zero coefficients of the matrix. Coefficients that belong to the same row
need to be grouped together, although they need not be ordered within the row.
Rows, however, need to be in order, i.e. row k + 1 must follow row k immediately.
col index is an integer array of the same length and its k-th element contains the
column index of the k-th element of data (col index). row start is an integer
array of length num row+1, and its i-th element points to the location of the first
non-zero element of the i-th row of the matrix within array data.
A ParCSR matrix consists of p parts Ak, k = 1, . . . , p (see (1)), where Ak is

stored locally on processor k. Each Ak is split into two matrices Dk and Ok. Dk

is a square matrix of order nk × nk, where nk = rk+1 − rk is the number of rows
residing on processor k. Dk contains all coefficients ak

ij , with rk ≤ i, j ≤ rk+1 − 1,
i.e. column indices pointing to rows stored locally. The second matrix Ok contains
those coefficients of Ak, whose column indices j point to rows that are stored on
other processors with j < rk or j ≥ rk+1. Both matrices are stored in CSR format.
Whereas Dk is a CSR matrix in the usual sense, in Ok, which in general is extremely
sparse with many zero columns and rows, all non-zero columns are renumbered for
greater efficiency. Thus, one needs to generate an array of length nOk

that defines
the mapping of local to global column indices, where nOk

is the number of non-zero
columns of Ok. We denote this array as col map Ok.
An example of an 11× 11 matrix that illustrates this data structure is given in

Figure 1. The matrix is distributed across 3 processors, with 4 rows on Processor
1 and Processor 2, and 3 rows on Processor 3. The 4 × 4 matrices D1 and D2

and the 3 × 3 matrix D3 are illustrated as boxes. The remaining coefficients are
compressed into the 4×3 matrix O1 (with col map O1 = (5,6,8)), the 4×4 matrix
O2 (with col map O2 = (1,2,4,9)) and the 3× 4 matrix O3 (with col map O3 =
(3,4,5,8)). Since often Op is extremely sparse, efficiency can be further increased by
introducing a row mapping that compresses zero rows by renumbering the non-zero
rows.

col map Ok can be generated by sorting all the column indices contained in
Ok via an efficient sorting algorithm such as a quicksort and compress the resulting

4



array so that each index appears only once. Quicksort applied to an array of size
n has the computational complexity of order O(n log n) with a memory usage of
O(n). Due to the assumptions, the number of elements in Ok is limited by mNb

and independent of p. Often, the number of elements in Ok is much smaller than
mNb. The final array col map Ok has at most as many, but often less elements
than Ok, and its size is independent of p. It also has the additional advantage of
being ordered, which allows the use of more efficient search algorithms, if one needs
to find the local number of a global column index.

3.2 Generating the Communication Package

The communication package is based on the concept of what is needed for a matrix-
vector multiplication. Let us consider the parallel multiplication of a matrix A
with a vector x. Processor k owns rows rk through rk+1 − 1 as well as the cor-
responding chunk of x, xk = (xrk

, . . . , xrk+1−1)
T . In order to multiply A with x,

Processor k needs to perform the operation Akx = Dkxk + Okx̃k, where x̃k =
(xcol map Ok(1), . . . , xcol map Ok(nOk

))
T . While the multiplication of Dk and xk can

be performed without any communication, the elements of x̃k are owned by the
receive processors of k. Another necessary piece of information is the amount of
data to be received by each processor. In general processor k owns elements of x
that are needed by other processors. Consequently processor k needs to know the
indices of the elements that need to be sent to each of its send processors.
In summary, the communication package on processor k consists of the following

information:

• the IDs of the receive processors

• the size of data to be received by each processor

• the IDs of the send processors

• the indices of the elements that need to be sent to each send processor

The algorithms used to obtain this information are described and analyzed in
the remainder of the section, using the assumptions stated in the previous section.
Recall that each processor by design has initially only local information available,

i.e. its own range and the rows of the matrix that it owns. We decided that each
processor should have the complete partitioning information. This is not necessary,
but simplifies the implementation considerably. It has the disadvantage that it
requires a memory usage of order O(p), since the length of the partitioning array is
p + 1, which can be a problem for very large p. In Section 3.4, we will suggest an
algorithm that decreases this order.
In order to find the global partitioning, each processor needs to send its local

range to all the other processors. This can be done using MPI Allgather, which
if implemented efficiently (using a tree structure), will take O(log p) operations.
Once the global partitioning is known, each processor has enough information to
determine its receive processors as well as the amount of data to be received.
Once the global partitioning has been generated, it is easy to determine the

receive processors by performing a search for each element j of col map Ok in the
global partitioning of A. If ri ≤ j < ri+1, row j or element j is owned by processor i.
If we assume an arbitrary matrix, j could be on any processor other than processor
k. Since the partitioning is ordered, one can use binary search, which will find this
element in at most O(log p) number of operations. However it is possible to do this
in a more efficient way. If we assume a balanced partitioning, a good initial guess
would be [(j−1)p/N ]+1, which might be the ID of the wanted processor or is close
to it. So even a sequential search following the guess should lead to the wanted ID

5



within a few steps, yielding an algorithm with O(1) number of operations. If we
have determined the receive processor for j, there is a high probability that the next
element l of col map Ok is owned by the same receive processor, say processor s.
So for the following elements of col map Ok, we check if it is owned by processor
s first. Only if this is not the case, we conduct another search. If it is not owned by
processor s, it must be owned by processor r where r > s, since both col map Ok

as well as the partitioning are ordered. This restricts the search even further. This
procedure is repeated until all receive processors have been determined. At the
same time, one can determine the number of receive processors and the amount of
data to be received by each receive processor. The search is performed at most q
times, since this is the maximal number of neighbors according to the assumption.
Thus the complete algorithm takes at most O(log p) operations, but possibly only
O(1) operations, if the partitioning is balanced.
If matrix A has a symmetric structure, the receive processors are also send

processors, and no further communication is necessary. However, this is different
in the non-symmetric case. In the current implementation, the IDs of the receive
processors and the amount of data to be obtained from each receive processor are
communicated to all processors. This is done via a MPI Allgatherv, which
requires O(log p) computations and O(p) memory. Once this information has been
received, each processor needs to search for its own ID in the information buffer.
Since this buffer is not ordered, this requires at most O(p) number of operations.
For a moderate number of processors, even up to 1000, the number of operations is
fairly insignificant compared to the size ofmNb, however it can become a potentially
high cost if we consider 100,000 processors. An algorithm that determines the send
processor in at most O(log p) number of operations is described in Section 3.3.
When each processor knows its receive and send processors, the remaining nec-

essary information can be sent directly to the receive processors, which know now
its send processors as well the amount of data to be received. Since the number of
neighbors and the amount of data is independent of p, the computational complexity
and the storage requirement is of order O(1).

3.3 Determing the Send Processors Using a Binary Tree

In this section, we discuss a possible approach to determine send processors that
eliminates the O(p) computational complexity in the current implementation. The
approach requires the use of theMPI Iprobe function, which checks for unexpected
messages sent by an unknown processor. Since its implementation may be ineffi-
cient, the use of MPI Iprobe is generally not recommended; it is better to send a
message to a processor that expects this message and has posted a corresponding
receive statement. However, in the case of determining send processors, it is not
possible for a processor to know which processors it will communicate with.
To illustrate the algorithm, assume that processor k determines processor r is

one of its receive processors, thus making k one of r’s send processors (a fact r cannot
determine from its local information.) Processor k sends r a message informing it of
this, which processor r will receive as it probes continually for incoming messages.
However, processor r may have other send processors, it cannot determine how many
such unexpected messages to receive. The question is: when can the processor stop
probing, or how does it know that the last message has been received?
A binary tree structure can be used to determine when all messages have been

received. First, it is necessary that each processor after receiving a message signals
to the sending processor that it has received the message. Then the sending pro-
cessor knows when all its messages have been received. Let us assume a binary tree
structure as illustrated in Figure 2. Each processor has a parent, and each parent
has up to two children, one of its children being itself. When a processor knows that

6



Figure 2: Binary tree structure with 8 processors

all its messages have been received, it sends a message to its parent. As soon as the
parent has received a confirmation from all its children that they have received their
messages, it sends a message to its parent, etc. When processor 1 finally receives
the message, all messages have been received. Because of the tree structure, this
takes O(log p) operations. Using the same tree structure in reverse order, processor
1 can now notify its children and stop probing, its children can in turn notify their
children and stop probing, and so on. Note that in the case where a processor is its
own parent it does not need to send a message to itself. After O(log p) operations,
all processors have been notified and have stopped probing for incoming messages.

3.4 Using an Assumed Partitioning

One drawback of the current implementation of the IJ interface is the O(p) memory
use, caused by storing the global partitioning on each processor. For the most
part, this information is not necessary, it is only used to determine the receive
processors. One can avoid this by using the following approach involving a fixed
assumed partitioning. This partitioning is defined by a function that is known by all
processors and involves O(1) operations (for a balanced partitioning this function
could be f(j) = [(j − 1)p/N ] + 1.) In general, this function does not describe the
actual partitioning, although one would hope that it is not too different.
This approach consists of three steps. First each processor k determines where

its assumed rows, rows its responsible for in the assumed partition, are stored in
the actual partition. Then it can compute its assumed receive processors, those
processors responsible in the assumed partitioning for the column indices given in
col map Ok, and send this information to them. At the same time it receives such
information from other processors. It can now compare this information with the
actual ownership information that it obtained in the first step and return corrections
or confirmations to the processors it received the information from. In the final step,
the assumed receive processor information is updated by the actual receive processor
information.
The first step can be implemented as follows. First, each processor can check

its own actual range against this function and determine if it coincides with the
assumed partitioning. If this is not the case, it needs to determine which processors
are responsible for (in the assumed partitioning) the rows it owns in the actual
partition and send this information to these processors. If it does not own rows that
are within its range according to the assumed partitioning, it needs to post receives
for an arbitrary processor - using MPI ANY SOURCE. Since its rows might be
distributed across several processors, this requires a loop, in which messages are

7



received until the processor knows where all its assumed rows are stored in the
actual partition.
In the second step, each processor needs to first determine its assumed receive

processors using the given function. This takes only O(1) operations. Let us assume
processor k determines that its assumed receive processors are processor r and
processor s. Processor k sends the indices of the elements it needs to the processor
responsible for them in the assumed partition. When r and s receive these messages
by processor k, they check whether they actually own the elements or rows that
k needs. If they own them, they send a message confirming this information to
processor k. If they do not own them or only own a few of them, they know on which
processor(s) the other rows or elements are located. Consequently, they can send
this information to processor k. Since each processor has at most q neighbors and q
is independent of p, the number of sends and receives is independent of p. However,
since a processor does not know how many messages to expect, it is necessary to
use a binary tree approach as described in Section 3.3 to inform a processor when
to stop probing. This approach takes O(log p) number of operations, i.e. possibly
more than the “lucky guess” approach, which might take only O(1) operations, but
memory usage is independent of p.
Finally, after each processor has stopped probing, it has received all the infor-

mation it needs to update the assumed receive processor information by the actual
receive processor information. In the best case, i.e the assumed receive proces-
sors are the actual receive processors and own the needed information, no change
is necessary. In the worst case, everything needs to be updated. The number of
computations and memory use in this step are independent of p.

3.5 Scalability Study

Figure (3) shows timings that were achieved by setting up increasingly larger ma-
trices across larger number of processors. Two test cases are considered. The first
one is a matrix derived by finite differences from a 3-dimensional Laplace operator
with a 7-point stencil, the second matrix has a 27-point stencil on a cube. Each
matrix has 64,000 (40x40x40) rows per processor and is set up by inserting a row
at a time on each processor. The test runs were done using n = 1, 8, 27, 64, 125,
216, 343, 512, 729, 900 processors of the ASCI White computer. In the first test
problem, each processor has at most 6 neighbors, in the second case at most 26
neighbors. The results show that the setup (which includes the generation of the
communication package) is very scalable after an initial performance degradation.
Obviously in the case of 1 processor, there is no communication and setup is done
very fast. The increase in time is expected for the 8 processor case. Time increases
further from the 8 (2x2x2) to the 27 (3x3x3) processor case. This is caused by the
fact that for the first test problem each processor has only 3 neighbors, when using
8 processors, vs. at most 6 neighbors, using 27 and more processors. For the second
problem, this difference is even more significant with 7 neighbors per processor,
when using 8 processors, vs. up to 26 neighbors in the later test runs.

4 The Structured-Grid Interface (Struct)

The Struct interface is appropriate for scalar applications on structured grids with
a fixed stencil pattern of non-zeros at each grid point. It provides access to hypre’s
most efficient scalable solvers for scalar structured-grid applications, the geometric
multigrid methods SMG [3] and PFMG [2]. The user defines the grid and the
stencil; the matrix and right-hand-side vector are then defined in terms of the grid
and the stencil.

8



Figure 3: Matrix setup times for the IJ interface with increasing number of proces-
sors

The grid is described via a global d-dimensional index space, i.e. via integer
singles in 1D, tuples in 2D, or triples in 3D (the integers may have any value, positive
or negative). The global indices are used to discern how data is related spatially,
and how it is distributed across the parallel machine. The basic component of the
grid is a box: a collection of abstract cell-centered indices in index space, described
by its “lower” and “upper” corner indices (see Figure 4). The scalar grid data is
always logically associated with cell centers. Each process describes the portion of
the grid that it “owns”, one box at a time. Note that it is assumed that the data
has already been distributed, and that it is handed to the library in this distributed
form.
The stencil is described by an array of integer indices, each representing a relative

offset (in index space) from some grid-point on the grid. For example, the geometry
of the standard 5-pt stencil can be represented in the following way:





(0, 1)
(−1, 0) (0, 0) (1, 0)

(0,−1)



 . (2)

After the grid and stencil are defined, the matrix coefficients are passed as an
array of doubles with each processor setting matrix values for the boxes it owns.

4.1 Data Structure

The underlying matrix data structure, Struct matrix, contains the following.

• Struct grid: describes the boxes owned by the processor (local boxes) as well
as information about other nearby boxes. Note that a box is stored by its
“lower” and “upper” indices, called the box’s extents.

• Struct stencil: an array of indices defining the coupling pattern in the matrix.

• data: an array of doubles defining the coupling coefficients in the matrix.

9



Index Space

(−3,2)

(9,12)

(10,5)

(20,13)

(11,14)

(17,20)

box1

box2

box3

Figure 4: A box is a collection of abstract cell-centered indices, described by its
minimum and maximum indices. Here, three boxes are illustrated.

box1

box2

box3

(9,4)

(21,14)

Figure 5: For parallel computing, additional storage is allocated for cells nearby a
box (ghost cells). Here, the ghost cells for box2are illustrated.

The corresponding vector data structure is similar except is has no stencil and the
data array defines the vector values. In both the vector and matrix the data array
is stored so that all values associated with a given box are stored contiguously. To
facilitate parallel implementation of a matrix-vector product, the vector data array
includes space for values associated with a box somewhat larger than the actual
box; typically including one boundary layer of cells or ghost cells (see Figure 5).
Some of these ghost cells may be part of other boxes, owned by either the same or
a different processor. Updating values in these ghost cells requires either copying
data (if the neighbor box is owned by the same processor) or communicating data
(if the neighbor box is owned by a different processor.) Determining these patterns
for updating ghost cells is the major task in implementing the Struct interface in
a scalable manor. In our implementation, there is much in common between the
two cases (neighbor box on same or different processor) so in our discussion we will
focus on the second case.

10



Assuming that the boxes are large, the additional storage of these ghost cells is
fairly small as the boundary points also take only a small percentage of the total
number of points. In some cases, the matrix data array will also contain space
for ghost cells. In particular, our implementation allows reduced storage when the
matrix is symmetric. For example, in the 5-pt stencil (Equation 2), the coefficients
for the “west” coefficient may be explicitly stored and the “east” coefficient is defined
by symmetry, i.e. the east coefficient at grid-point (i, j) is defined by the stored
west coefficient at (i + 1, j). This requires ghost cells for the matrix data; if the
grid-point (i, j) is at the right-most boundary of a box its east coefficient is stored
as the west coefficient in the ghost cell (i+ 1, j).

4.2 Generating the Neighborhood Information

Recall that in the interface, a given processor k is passed only information about
the grid boxes that it owns. Determining how to update ghost cell values requires
information about nearby boxes on other processors. This information is generated
and stored when the Struct grid is assembled. Determining which processors own
ghost cells is similar to the problem in the IJ interface of determining the receive
processors. In the IJ case, this requires information about the global partitioning.
In the Struct case, it requires information about the global grid.
The algorithm proceeds as follows. Here we let p denote the number of processors

and b denote the total number of boxes in the grid (note b ≥ p). First we accumulate
information about the global grid by each processor sending the extents of its boxes
to all other processors. As in the IJ case, this can be done using MPI Allgather

with O(log p) operations. Memory usage is of order O(b), since the global grid
contains b boxes.
Once the global grid is known, each local box on processor k is compared to every

box in the global grid. In this box-by-box comparison a distance index is computed
which describes the spatial relationship in the index space of one box to another. If
box a is shifted by the distance index, d(a, b), it will define a region in index space
that intersects box b. Further, this is the minimal shift producing a non-empty
intersection. The distance between two boxes is defined by the minimum absolute
value of the distance index components. As an example, box1 and box3 in Figure
4 are distance 2 apart with d(box1,box3) = (2, 2) and d(box3,box1) = (−2,−2)
This comparison of each local box to every global box involves O(b) computations.
Once the comparison is done, all global boxes within a specified distance (typ-

ically 2) from a local box are stored as part of a neighborhood data structure on
processor k. Boxes not in this neighborhood can be deleted from processor k’s
description of the global grid. The storage requirement for the neighborhood is
independent of p. The neighborhood data structure contains information about the
nearby boxes: their extents, the processor owning it, and a unique ID (each box in
the grid has an associated unique ID number.) In addition, it contains a linked list
structure that quickly gives information about which neighborhood boxes intersect
a given local box when the local box is shifted by a particular index.
The current neighborhood structure does give fast access to information about

nearby cells owned by other processors, but there are potential drawbacks. The
storage requirement is O(b) as the global grid is initially gathered to all processors
and the box-by-box comparison to determine neighbors involves O(b) operations.
One possible approach to eliminate these drawbacks would be similar to the as-
sumed partitioning approach described at the end of Section 3.4. The idea is to
have a function describing an assumed partitioning of the index space to processors
and have this function available to all processors. Unlike the one-dimensional IJ
partitioning, this partition would be d-dimensional. A processor would be able to
determine its neighbors in the assumed partition in O(1) computations and storage.

11



proc1

Send Boxes

proc2

proc3
Receive Boxes

Figure 6: The communication package for processor 2 contains send boxes (values
owned by processor 2 needed by other processors) and receive boxes (values owned
by other processors need by processor 2.)

A multi-phase communication procedure like that previously described for the IJ
case could be used to determine the actual neighbors with O(log p) complexity.

4.3 Generating the Communication Package

In this section, we describe the generation of a communication package which in-
cludes information needed for updating ghost cell values. As mentioned, ghost
values in the vector are needed to perform a matrix-vector product and ghost val-
ues in the matrix are needed when symmetric storage is used. Here we concentrate
on the matrix-vector product.
To perform the matrix-vector product, processor k must have up-to-date values

in all ghost cells that will be “touched” when applying the matrix stencil at the
cells owned by processor k. Determining these needed ghost cells is done by taking
each box owned by the processor, shifting it by each stencil entry and finding the
intersection of the shifted box with boxes in the neighborhood data structure. Be-
cause of the linked list structure, the shifted box is intersected not with all neighbor
boxes, but only those that can produce a non-zero intersection. As an example,
consider the same layout of boxes as before with each box on a different processor
(see Figure 6). If the matrix has the 5-pt stencil (Equation 2), then shifting box2

by the “north” stencil entry and intersecting this with box3 produces one of the
dark shaded regions labeled as a receive box. Using this procedure, a list of receive
boxes and corresponding owner processors is generated.
The procedure for determining the cells owned by processor k that are needed to

update ghost cells on other processors is similar. Here we need to shift the neighbor
boxes by each stencil entry and find the intersection with the local boxes. In Figure
6, shifting box1 by the “east” coefficient and intersecting this with box2 produces
one of the light shaded regions labeled as a send box. The linked list structure again
limits the computations needed by considering only boxes that can produce non-
zero intersections. This procedure produces a list of send boxes and corresponding
list of processors needing these values.

4.4 Scalability Study

Figure (7) shows timings that were achieved by setting up increasingly larger ma-
trices across larger number of processors. The matrix is derived by finite differences

12



Figure 7: Matrix setup times for the Struct interface with increasing number of
processors

from a 3-dimensional Laplace operator with a 7-point stencil. Each processor owns
a single box of size 40×40×40. The test runs were done using 1, 8, 64, 216, 512, 720
and 900 processors of the ASCI White computer. This setup includes the generation
of the neighborhood structure. Since symmetric storage was used, it also includes
the creation of a communication package to update ghost values in the matrix and
the actual resulting MPI communication. As was the case for the IJ interface, the
results show that the setup is very scalable after the initial hit for communications.
For this number of processors, we do not see much effect from either the O(log p)
operations in gathering information about the global grid using MPI Allgather,
or the more significant O(b) operations needed in the box-by-box comparison to
determine neighbors. Note that these times to build the matrices are quite small;
much smaller than the times needed to solve the linear system. Also the time dif-
ference between the 720 and 900 processor runs is at the level of the resolution of
the timer we used - 0.01 seconds.

5 The Semi-Structured-Grid Interface (semiStruct)

The semiStruct interface is appropriate for applications with grids that are mostly—
but not entirely—structured, e.g. block-structured grids (see Fig. 8), composite
grids in structured AMR (adaptive mesh refinement) applications, and overset grids.
In addition, it supports more general PDEs than the Struct interface by allowing
multiple variables (system PDEs) and multiple variable types (e.g. cell-centered,
face-centered, etc.). The interface provides access to data structures and linear
solvers in hypre that are designed for semi-structured grid problems, but also to the
most general data structures and solvers.
The semiStruct grid is composed out of a number of structured grid parts each

with its own index space, where the physical inter-relationship between the parts
is arbitrary. Each part is constructed out of two basic components: boxes (see
Section 4) and variables. Variables represent the actual unknown quantities in the
grid, and are associated with the box indices in a variety of ways, depending on
their types. In hypre, variables may be cell-centered, node-centered, face-centered,

13



Figure 8: An example block-structured grid, distributed across many processors.

(i, j)

Figure 9: Grid variables in hypre are referenced by the abstract cell-centered index
to the left and down in 2D (and analogously in 3D). So, in the figure, index (i, j) is
used to reference the variables in black. The variables in gray, although contained
in the pictured cell, are not referenced by the (i, j) index.

or edge-centered. Face-centered variables are split into x-face, y-face, and z-face,
and edge-centered variables are split into x-edge, y-edge, and z-edge. The unknowns
in the linear system are characterized by (part, var, index): a part number, a
variable number, and an index identifying a particular cell on the part. See Figure
9 for an illustration in 2D.
The non-zero pattern of the matrix is described through a graph. The graph

contains two types of couplings: stencil and non-stencil couplings. The stencil
couplings describe a coupling pattern that is present throughout the grid and are
described by stencils similar to the Struct case. The non-stencil couplings are spe-
cific couplings between particular unknowns, i.e. (part1,var1,index1) is coupled
to (part2,var2,index2). The interface allows arbitrarily many non-stencil cou-
plings and they may couple any unknowns, but the semiStruct interface is only
appropriate when the majority of matrix non-zeroes are due to stencil couplings.
In most cases, the stencil couplings describe the coupling within a part (intra-
part) and the non-stencil couplings describe coupling between parts (inter-part).
However, this is not always the case. Non-stencil entries may describe intra-part
couplings that occur at only certain cells in the part and therefore do not belong to
the stencil. Through the use of the GridSetNeighborBox() routine, stencil entries
can describe inter-part couplings. This routine is used to describe how the index
space on part1 is related to the index space on part2. This relationship allows

14



stencil entries reaching “outside” of part1 to touch variables on part2. See [7] for
a description of this usage in block-structured grids.
After the graph is defined, the matrix coefficients are passed as an array of

doubles with each processor setting matrix values for the boxes it owns.

5.1 Data Structure

The semiStruct interface allows the user to choose from two underlying data struc-
tures for the matrix. One option is to use the ParCSR matrix data type discussed
in Section 3.1. The second option is the semiStruct matrix data type which is
based on a splitting of matrix non-zeros into structured and unstructured couplings
A = S + U . The S matrix is stored as a collection of Struct matrices and the U
matrix is stored as a ParCSR matrix. In our current implementation, the stencil
couplings within variables of the same type are stored in S all other couplings are
stored in U . If the user selects the ParCSR data type, then all couplings are stored
in U (i.e. S = 0.)
Since the semiStruct interface can use both Struct and ParCSR matrices, the

issues discussed in the previous two sections impact its scalability as well. The
major new issue impacting scalability is the need to relate the the semi-structured
description of unknowns and the global ordering of unknowns in the ParCSR ma-
trix, i.e. the mapping M(part,var,index) = global rank. The implementation
needs this mapping to set matrix entries in U .

5.2 Mapping to Global Ranks

The global ordering of unknowns is an issue internal to the semiStruct implementa-
tion; the user does not need and is not aware of this ordering. In our implementation
the ordering is defined as follows.

global rank= 0
loop over processors
loop over variables
loop over parts
loop over boxes
loop over grid indices in box

M(part,var,index) = global rank

global rank = global rank+1

In our implementation of the semi-structured grid we include the concept of
BoxMap to implement this mapping. There is a Box Map for each variable on
each part; the purpose is to quickly compute the global rank corresponding to a
particular index. To describe the BoxMap structure we refer to Figure 10. By
cutting the index space in each direction by lines coinciding with boxes in the grid,
the index space is divided into regions where each region is a either empty (not
part of the grid) or is a subset of a box defining the grid. The data structure for
the BoxMap corresponds to a d-dimensional table of BoxMapEntries. In three
dimensions, BoxMapEntry[i][j][k] contains information about the region bounded
by cuts i and i+ 1 in the first coordinate direction, cuts j and j + 1 in the second
coordinate direction, cuts k and k+1 in the third coordinate direction. Among the
information contained in BoxMapEntry is the first global rank (called offset) and
the extents for the grid box which this region is a subset of. The global rank of any
index in this region can be easily computed from this information.
The mapping M(part,var,index) = global rank is computed by accessing

theBoxMap corresponding to part and var, searching in each coordinate direction

15



Index Space

(−3,2)

(9,12)

(10,5)

(20,13)

(11,14)

(17,20)

box1

box2

box3

Figure 10: The BoxMap structure divides the index space into regions defined by
cuts in each coordinate direction.

to determine which cuts index falls between, retrieving the offset and box extents
from the appropriate BoxMapEntry, and computing global rank from this
retrieved information. This computation has O(1) (independent of number of boxes
and processors) complexity except for the searching step. The searching is done by
a simple linear search so worst case complexity is O(b) since the number of cuts
is proportional to the number of boxes. However, we retain the current position
in the BoxMap table, and in subsequent calls to the mapping function, we begin
searching from this position. In most applications, subsequent calls will map indices
nearby the previous index and the search has O(1) complexity. Further optimization
is accomplished by retrieving BoxMapEntries not for a single index but for an
entire box of indices in the index space.
The BoxMap structure does allow quick mapping from the semi-structured

description to the global ordering of the ParCSR matrix, but it does have drawbacks:
storage and computational complexity of initial construction. Since we store the
structure on all processors, the storage costs are O(b) where b is the global number of
boxes (again b is at least as large as p, the number of processors). Constructing the
structure requires knowledge of all boxes (accomplished by the MPI Allgather

with O(log p) operations and O(b) storage as in the Struct case), and then scanning
the boxes to define the cuts in index space (requiring O(b) operations and storage.)
As in the IJ and Struct cases, it may be possible to use the notion of an assumed
partitioning of the index space to remove these potential scalability issues.

5.3 Scalability Study

Figure (12) shows timings that were achieved by setting up increasingly larger
matrices across larger number of processors. The matrix is again derived by finite
differences from a 3-dimensional Laplace operator with a 7-point stencil. Three
different descriptions or partitions of the grid were used (see Figure 11). In partition
1, the grid is defined as a single part and each processor owns a single box of size
40×40×40. In partition 2, the grid is defined as two parts and each processor owns
a box of size 40 × 40 × 20 on each part. In partition 3, the grid is defined as two
parts and each processor owns a box of size 40× 40× 40 on one of the parts. Times
are shown for using both the semiStruct and ParCSR data structures. The test
runs were done using 1, 8, 64, 216, 512, 720 and 900 processors of the ASCI White
computer. This setup includes the generation of the BoxMap structure and (in the
ParCSR runs) the use of it to map to the global ordering. In the results, we first
note that the three different partitions all perform similarly. The biggest effect is the
choice of underlying data type with the semiStruct type being much faster than the
ParCSR. The speed advantage of semiStruct data type is likely due to the ability to

16



Figure 11: Layout of grids in numerical experiments: partition 1 (left) , partition 2
(middle), partition 3 (right).

Figure 12: Matrix setup times for the semiStruct interface with increasing number
of processors. There are two time shown for each partition: one with the semiStruct
data type (S) and one with the ParCSR data type (P).

quickly set coefficients corresponding to a box of index space simultaneously in the
underlying Struct matrix. In the results, we see somewhat worse scaling behavior
than either IJ or Struct. This is to be expected. Since the semiStruct interface
uses both Struct and ParCSR matrices and is built on top of the IJ and Struct

interfaces, it inherits any of their potential scalability problems. In addition, there is
the additional O(b) computations associated with the construction of the BoxMap

structure. Although these potential scaling problems exist, their effect is not that
large for the number of processors in this study, and the interface scales reasonably
well.

6 Conclusions and Future Work

The experiments show that for a moderate number of processors the various hypre

interfaces are very scalable. The analysis shows that parts of the interface have
some scalability issues that could be of concern when using 100,000 processors.
However, we have suggested several scalable algorithms that deal with these issues,
and that we plan to implement in the future. Future plans also include adding
other data structures to the IJ interface. Additional data structures are desirable
for various reasons, e.g. to be able to link to other packages, such as PETSc. Also, if
additional matrix information is known, more efficient data structures are possible.

17



For example, if the matrix is symmetric, it would be advantageous to design a data
structure that takes advantage of symmetry. Such an approach could lead to a
significant decrease in memory usage. Another data structure could be based on
blocks and thus make better use of the cache. Small blocks could naturally occur
in matrices derived from systems of PDEs, and be processed more efficiently in an
implementation of the nodal approach for systems AMG.

7 Additional Information

The hypre library can be downloaded by visiting the hypre home page at the URL
http://www.llnl.gov/CASC/hypre. Although hypre is written in C, it can also be
called from Fortran. Information on hypre and how to use it can be found in the
users manual and the reference manual, which are also available at the same URL.

Acknowledgments

This paper would not have been possible without the many contributions of the
hypre library developers: Edmond Chow, Andy Cleary, Van Henson, David Hysom,
Mike Lambert, Jeff Painter, Charles Tong and Tom Treadway. This work was
performed under the auspices of the U.S. Department of Energy by University of
California Lawrence Livermore National Laboratory under contract No. W-7405-
Eng-48.

References

[1] hypre: high performance preconditioners. http://www.llnl.gov/CASC/hypre/

[2] Ashby, S., Falgout, R.: A parallel multigrid preconditioned conjugate gradient
algorithm for groundwater flow simulations. Nuclear Science and Engineering
124 (1996) 145–159

[3] Brown, P., Falgout, R., Jones, J.: Semicoarsening multigrid on distributed mem-
ory machines. SIAM J. Sci. Comput. 21 (2000) 1823-1834

[4] Chow, E.: A priori sparsity patterns for parallel sparse approximate inverse
preconditioners. SIAM J. Sci. Comput. 21 (2000) 1804-1822

[5] Clay, R., Mish, K., Otero, I., Taylor, L, Williams, A.: An annotated refer-
ence guide to the finite element interface (fei) specification: version 1.0. Sandia
National Laboratories Report SAND99-8229, 1999.

[6] Falgout, R., Yang, U.M.: hypre: a library of high performance preconditioners.
in Computational Science - ICCS 2002 Part III, Sloot, Tan, Dongarra, Hoekstra,
eds., Lecture Notes in Computer Science 2331 (2002) 632-641, Springer. Also
available as LLNL technical report UCRL-JC-146175.

[7] Falgout, R., Jones, J., Yang, U.M.: Conceptual interfaces in hypre. To appear in
Future Generation Computer Systems. Also available as LLNL technical report
UCRL-JC-148957.

[8] Henson, V. E., Yang, U. M.: BoomerAMG: a parallel algebraic multigrid solver
and preconditioner. Applied Numerical Mathematics 41 (2002) 155-177. Also
available as LLNL technical report UCRL-JC-133948 (2000).

[9] Hysom, D., Pothen, A.: A scalable parallel algorithm for incomplete factor
preconditioning. SIAM J. Sci. Comput. 22 (2001) 2194–2215

18



Approved for public release; further dissemination unlimited




